

ULTIMATE TEST SERIES NEET -2020 TEST-07 SOLUTION

Test Date :20-03-2020

[PHYSICS]

- 1. Potential at earthed conductor becomes zero.
- 2. Due to slab.

$$C \rightarrow KC$$
, $E = \frac{1}{2} CV^2$

$$V \rightarrow V/K$$
 , $E = E/K$

$$Q = CV = constant$$

 $V \rightarrow$ Decrease, Energy decrease.

Q → Remain constant

- 3. Potential at earthed conductor becomes zero and by induction charge will not remain uniform.
- 4. $\begin{array}{c|c} & & \\ & \downarrow \\ & V = Ed \end{array}$

Ed = V =
$$(d + 1.6-2)E + \frac{E}{K}.2$$

$$\frac{2}{K} = \frac{4}{10} \left[K = 5 \right]$$

- 5. Flux donot depend upon shape
- 6. $\mathbf{w} = \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{d}}$ $= \mathbf{q}_0 \overrightarrow{\mathbf{E}} \cdot \overrightarrow{\mathbf{d}}$ $= \mathbf{q}_0 \left(\mathbf{E}_0 \hat{\mathbf{i}} \right) \cdot \left(\mathbf{a} \hat{\mathbf{i}} \mathbf{a} \hat{\mathbf{j}} \right)$ $= \mathbf{q}_0 \mathbf{E}_0 \mathbf{a}$

(when switch is opened)

$$10 \times 1 = i_1 \times (2 + x)$$

$$i_1 = \frac{10}{2+x}$$
(1)

$$i_2 = \frac{10}{x}$$

$$\therefore i_2 = 2i_1$$

$$\frac{10}{x} = 2\left(\frac{10}{2+x}\right)$$

$$x = 2\Omega$$

8. T.P.D = E - I r
$$\Rightarrow$$
 12 = E - 2r ...(1)
T.P.D = E + I r \Rightarrow 15 = E + 3r ...(2)
Solve eqⁿ (1) & (2)

9. When wire is stretched Volume = constant $Al = \pi r^2 l = \text{constant}$

$$l \times \frac{1}{r^2}$$

Resistance $R = \frac{\rho l}{A}$ so $R \propto \frac{1}{r^4}$

- 10. $V = x\ell$ $IR = x \times 100$ $I(R + R) = x \times \ell'$ $\frac{1}{2} = \frac{100}{\ell'}$
- 11. $E_{arc} = \frac{2k\lambda}{a}\sin(\alpha/2)$

 $\Rightarrow \ell' = 200 \text{ cm}$

for this figure $\alpha = 180^{\circ}$

- hence $E = \frac{2k\lambda}{a} = \frac{\lambda}{2\pi \in_0 a}$
- 12. Faces which are related to the corner will have zero flux $(E \perp A)$.

13. Deviation $y = \frac{1}{2} \left(\frac{qE}{m} \right) \left(\frac{x^2}{v^2} \right)$

But putting the values we get y = 1.76 mm

14. As charge moves towars 'A' more number of field lines will be related with 'A' hence ϕ_B will decreases.

15. $V_c = \frac{k(-Q)}{x} + \frac{k(-q)}{x} + \frac{k(2q)}{x} + \frac{k(2Q)}{x}$

As per question $V_c = 0$

$$a + q = 2q + 2Q$$
$$Q = -q$$

- 16. The given point of observation for the given sphere is inside. Hence field inside the conducting sphere is zero.
- 17. $F = -\frac{dU}{dx}$

$$F = \vec{p} \cdot \frac{d\vec{E}}{dx}$$

- as $\theta = 90$
 - F = 0
 - $\theta \neq 90$
 - $F \neq 0$

If dipole is aligned with EF lines hence $\tau = 0$

> for no loss of energy $V_1 - V_2 = 0 \Rightarrow V_1 = V_2$ If $Q_1 R_2 \neq Q_2 R_1$ then there is alway a loss in energy of the system hence option (4) is correct.

19. Capacity when dielectric is filled partially is

$$c' = \frac{\epsilon_0 A}{d - t \left(1 - \frac{1}{\epsilon_r}\right)}$$

Hence
$$c = \frac{\epsilon_0 A}{d}$$

and
$$c' = \frac{\epsilon_0 A}{d - d/2 \left(1 - \frac{1}{2}\right)} = \frac{2 \epsilon_0 A}{d} = 2c$$

$$\frac{c'}{c} = 2$$
 for copper $\in_{r} = \infty$

20.
$$C_{PR} = C/3 + C/2 = \frac{5}{6}C$$

$$C_{PQ} = \frac{C}{4} + C = \frac{5}{4}C$$

$$C_{PR} = C_{PQ} = \frac{1}{6} : \frac{1}{4} = 2 : 3$$

21.
$$F = \frac{K(q)(2q)}{r^2} = \frac{2Kq^2}{r^2}$$
 (before touching)

(After touching)
$$-q/2$$
 $-q/2$

$$F' = \frac{K(q/2)(q/2)}{r^2} = \frac{kq^2}{4r^2} \implies F' = F/8$$

22. Charge enclosed $q_{en} = \sigma \pi (R^2 - x^2)$

Here
$$r = \sqrt{R^2 - x^2}$$

$$\phi_{\text{sphere}} = \frac{\sigma \pi (R^2 - x^2)}{\epsilon_0}$$

23. Work done = change in energy

$$eEd = \frac{1}{2}m(V\cos 60^{\circ})^{2} = \frac{1}{4}\left(\frac{1}{2}mV^{2}\right)$$

but
$$\frac{1}{2}$$
 mV² = K

$$E = \frac{K}{4 \text{ ed}}$$

24. for surface points, net charge = 0 hence potential at surface = 0

(a)
$$\phi = \frac{q_{in}}{\epsilon_0}$$
 but $q_{in} = 0$
Hence $\phi = 0$

- (d) Concentric circle which lies on equitorial plane will have zero potential.
- 25. Potential difference does not depend upon charge of outer sphere.
- 26. In absence of gravity only electrostatic force will work.

$$T = \frac{K(Q)(Q)}{(2\ell)^2}$$
 and angle between strings = 180°

27.
$$TE_{i} = TE_{f}$$

$$\frac{KQq}{R} = \frac{1}{2}mv^{2}$$

$$v = \sqrt{\frac{2KQq}{mP}}$$

28. If inner sphere is earthed then its potential will be zero.

Let charge on inner sphere is q.

$$V_{inner} = \frac{KQ}{3R} + \frac{Kq}{R} = 0$$

$$q = -\frac{Q}{3}$$

- If cell is connected potential difference will remain same but capacitance increases so charge will increase.
- 30. Net resistance across capacitor is $\frac{3R}{2}$

$$\tau = R_{\rm N}C = \frac{3}{2}RC$$

31. Balanced (ws bridge)

32.
$$V - V_{(0,0,0)} = \int_{0}^{1} E_{x} dx + \int_{0}^{1} E_{y} dy$$

$$V - 2 = \left[x^{2}\right]_{0}^{1} + \frac{1}{3} \left[y^{3}\right]_{0}^{1}$$

$$V = 2 + 1 + \frac{1}{3} = \frac{10}{3} \text{ volt}$$

33.
$$x = \frac{r\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}} \quad x \text{ is distance from } q_1.$$
$$x = \frac{30\sqrt{e}}{\sqrt{e} + \sqrt{9e}} = \frac{30}{3} = 10 \text{ cm from } e$$

34.
$$F = P_2 \frac{d}{dr} \left(\frac{2KP_1}{r^3} \right)$$

$$F = 2KP_1P_2 \frac{d}{dr} r^{-3}$$

$$F = -6 \frac{KP_1P_2}{r^4}$$

35. When circuit is open V = E $\therefore E = 2.2 V$

V = IR = 1.8

$$\therefore I = \frac{1.8}{5} = 0.36 \text{ Amp.}$$

$$V = E - Ir$$

$$Ir = E - V = 2.2 - 1.8 = 0.4$$

$$r = \frac{0.4}{I} = \frac{0.4}{0.36} = \frac{10}{9} \Omega$$

36.
$$E_{net} = \frac{E_1 r_2 + E_2 r_1}{r_1 + r_2}$$

$$= \frac{(18 \times 1) + (12 \times 2)}{(2+1)}$$

$$E_{net} = \frac{18 + 24}{3} = \frac{42}{3} = 14 \text{ volt}$$

37.
$$V_{pm} = 4V$$

$$V_{MN} = \frac{1}{1 + 0.25} \times 4$$
$$= 3.2 \text{ volt}$$

38.
$$R = \frac{(2\pi \times 0.1)12}{2}$$
 $R = 1.2 \pi$

$$\therefore R_{AB} = R/2 = \frac{1.2\pi}{2} = 0.6\pi\Omega$$

39.
$$I_g.G = (I - I_g).S$$

$$\therefore S = \frac{I_g.G}{(I - I_g)}$$

Given I = 5A, $I_g = 1$ Amp., G = 60 M

$$\therefore S = \frac{60 \times 1}{4} = 15 \Omega \text{ in parallel}$$

40. Power dissipated in 5Ω

=
$$i^2 R$$

= $(2)^2 \times 5 = 20 W$

 \therefore Power dissipated in R = 30 – 20

42. Given circuit can be redrawn as

Current in 6Ω I = $\sqrt{\frac{P}{R}} = \sqrt{\frac{6}{6}} = 1$

$$I = \frac{12}{6 + \frac{8P}{8 + R}}$$

$$1 = \frac{12}{48 + 14R} (8 + R)$$
$$R = 24\Omega$$

44.
$$\frac{R_1}{R_2} = \frac{\ell}{100 - \ell}$$

$$\Rightarrow \frac{15}{10} = \frac{\ell}{100 - \ell}$$

$$\Rightarrow \ell = 60 \text{ cm}$$

45. T.P.D. = E - Ir = E -
$$\left(\frac{E}{r}\right)$$
r = 0

(here 4Ω is shot circuited so it is use less)

[CHEMISTRY]

46.
$$\Delta S = \Theta ve$$
, $\Delta H = \Theta ve$

48.
$$R = K[RC1]^1 [H_2O]^0$$

49.
$$E_{cell} = E_{cell}^0 = \frac{0.0591}{2} log_{10} \frac{[Zn^{+2}]}{[Cu^{+2}]}$$

$$50. \quad kt = 2.303 \log \frac{a}{a - x}$$

- 51. Only C reduceses H⁺ therefore element A, B and D are below in E.C.S. than hydrogen
 ⇒ A reduceses only ion of D therefor it's position in E.C.S. is above than D.
 ⇒ Increaseing order of SRP→C < H < B < A < D
 - \Rightarrow Increaseing order of SRP \rightarrow C < H < B < A < D
- 52. In this reaction : Intermediates \Rightarrow N₂O₂ and N₂O
- 53. specific resistance (k = $\frac{1}{\rho}$ = $\frac{1}{R} \times \frac{1}{a}$) $\pi_{\text{m}} = \frac{k \times 1000}{\text{molarity}}$

54.
$$r = k(A_2)^x (B)^y$$

55.
$$\alpha = \frac{\gamma_{m}}{\gamma_{m}^{\infty}}$$

$$K_{a} = \frac{C\alpha^{2}}{1-\alpha}$$

- 56. Conductivity of strong electrolyte increasing on dilution due to increase in inter ionic distance.
- 57. Mg is obtain by electrolyesis of molten solution of MgCl₂.

58.
$$kt_{1/4} = 2.303log_{10} \frac{a}{3a/4}$$

59.
$$SO_3^{2-} \Rightarrow 1(x) + 3(-2) = -2 : x = +4$$

 $S_2O_4^{2-} \Rightarrow 2(x) + 4(-2) = -2 : x = +3$
 $S_2O_6^{2-} \Rightarrow 2(x) + 6(-2) = -2 : x = +5$

60.
$$t_{1/2} = \frac{0.693}{K}$$
$$\log \frac{a}{a - x} = \frac{kt}{2.303}$$

61. Central atom nitrogen (O.N. = +3) present in intermediate oxidation state so it can act as oxidant as well as reductant.

62. R.O.R. =
$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{1}{2} \frac{d[C]}{dt} = \frac{d[D]}{dt}$$

R.O.D. of A = $-\frac{d[A]}{dt}$

R.O.D. of B = $-\frac{d[B]}{dt}$

63.
$$R = k[NO_2]^1$$
order of reaction = 1
$$t_{1/2} = \frac{0.693}{k}$$

64.
$$NO_3^- \longrightarrow NH_2.NH_2$$

 $2N^{5+} + 14e^- \longrightarrow 2N^{2-}$
 $N^{5+} + 7e \longrightarrow \frac{1}{2}[N_2H_4]$

65.
$$K = \frac{1}{R} \left(\frac{\ell}{A} \right)$$
$$\left(\frac{\ell}{A} \right) = 0.013 \times 300 \text{ cm}^{-1}$$

66. fact (refer theory of catalyst

67.
$$w = \frac{E}{F} \times It$$

 $24 \times 5 = \frac{27/3}{96500} \times 9650 \times t \times \frac{90}{100}$

- 68. Only C is correct rest are incorrect
- 69. fact
- In peptization freshly prepared precipitate is 70. converts into sol.
- On iron surface iron itself act as anode an get oxidised an O2 in water get reduced

72.
$$lnk = lnA - \frac{E_a}{R \times T}$$

73.
$$E^{\circ} = \frac{0.0591}{2} \log_{10} \text{Keq.}$$

$$0.2955 = \frac{0.0591}{2} \log \text{Keq.} \Rightarrow \text{Keq.} = 10^{10}$$

- 74. $\pi = i \ CRt \ i = 1$
- 75. -
- 76. B is present in octahedral void
 77. T°_f T_f = i × k_f m
 78. fact

79.
$$d = \frac{z \times m}{a^3 \times N_A}$$

80.
$$\Delta T_f = i \times kf \times m$$

81.
$$r = \frac{a}{2\sqrt{2}}$$

- 82. $Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ 65 g of Zn evolve 22400 ml H_2
- therefore 0.5×10^{-2} mol H₂ evolved by 0.32g Zn 83. More the value of vant'Hoff facto more will be boiling

$$84. \quad m = \frac{x_B 1000}{x_A \times M_A}$$

85. 50 ml of 5.6 % w/v - KOH contain 4.91 mol of KOH & mol 5.6% w/v HCl contain 7.67 mol of HCL. SO acid is more and base neutralises completely

86.
$$r_{\text{new}} = r_{\text{old}} \times \mu^{\Delta T/10}$$

 $\Delta T = 55 - 25 = 30$

87.
$$E = E^{\circ} - \frac{0.059}{2} \log \frac{[Cu^{2+}]}{[Ag^{+}]^{2}}$$

As $[Ag]^+$ increase twice $\frac{[Cu^{2+}]}{[Ag^+]^2}$ become $\frac{1}{4}$ and

E shows more change and on halving the [Cu²⁺]

$$\frac{[Cu^{2+}]}{[Ag^+]^2} = \frac{1}{2} \text{ of intial value}$$

88.
$$W = \frac{E}{96500} \times Q$$
$$710 = \frac{35.5}{96500} \times Q$$

$$Q = 1930000 = 1.93 \times 10^6 \text{ C}$$

- 89. Physisorption is multilayered
- 90. Fact